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Abstract: Electrolytes symmetric in charge and size are studied at different concentrations by using both grand canonical 
Monte Carlo simulations and two integral equations. First, we compare the simulation results for the long-wavelength limit 
of the partial structure factor for particle number fluctuations, SNN(0), with the predictions of the hypernetted chain (HNC) 
integral equation. Mean activity coefficients are also evaluated. The data simulate a 2:2 electrolyte in aqueous solution at 
298 K, and also a more strongly interacting 2:2 electrolyte in a solvent of lower dielectric constant, such as 30% dioxane in 
water. The results show that the HNC integral equation underestimates considerably the fluctuations in the number of particles 
in the concentration range around 0.07 mol/dm3. The dependence of SNN(0) on the dielectric constant is also examined. The 
correlation functions obtained from the HNC equation are in poor agreement with the simulations, especially at the lower 
dielectric constant. A possible solution to this problem is presented with use of the new IPY closure proposed recently by 
lchiye and Haymet. This closure leads to good agreement with simulation data. 

1. Introduction 
The development of quantitative theories for electrolyte solutions 

is an important and challenging goal of liquid-state statistical 
thermodynamics. Since the pioneering work of Debye and Hiickel 
in 1923,' which is really restricted to 1:1 electrolytes when applied 
to aqueous solutions, considerable progress has been achieved. The 
application of new techniques from statistical mechanics, such 
as computer simulations, has provided tests of traditional theories 
and models. Integral equations and perturbation theories have 
been proposed, and the definitive comparisons of Valleau and 
others2"8 show that the hypernetted chain (HNC) equation pro
vides physically meaningful agreement with simulation results. 
Yet there are still unresolved problems with 2:2 electrolytes, and 
especially with still more highly charged electrolytes, and these 
are the focus of this paper. A vast amount of the data has been 
accumulated recently, and it has been summarized carefully in 
a number of review articles.9"14 It is impossible to mention all 
important contributions here, so we will reference articles only 
of direct relevance to this study. 

In a previous article15 we studied the structure and thermo
dynamics of highly asymmetric electrolytes as models for micellar 
solutions. It has been found that these systems share many of 
the properties of more simple symmetric, but multivalent, systems 
such as 2:2 electrolytes. For example, in both cases the ions are 
strongly associated, and this makes direct application of the HNC 
approximation difficult. The research presented here is motivated 
by the facts that (i) knowledge of the structure of isotropic so
lutions is a prerequisite to understanding their behavior in het
erogeneous systems,16'" (ii) due to the symmetry in charge and 
in size it is easier to test improvements18'19 in integral equation 
theories beyond HNC, the development of which may also be 
relevant for colloidal solutions, and finally (iii) these systems are 
interesting per se, since some more approximate theories20"22 

suggest that the model solutions undergo spinodal decomposition 
in the dilute electrolyte regime, under conditions which are fre
quently attainable in the laboratory. 

The two major methods used here to study the structure and 
thermodynamics of strongly interacting symmetric electrolytes 
are the grand canonical Monte Carlo (GCMC) simulation 
technique and the hypernetted chain (HNC) integral equation. 
Crucial bridge function improvements to the HNC equation19 are 
also included. Grand canonical Monte Carlo simulations have 
been used to study electrolyte solutions previously,3"5'16'17 and 
Valleau, Cohen, and Card4 have used these data for a critical 
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evaluation of existing electrolyte theories. One of the advantages 
of this method is that it yields directly the mean activity coefficient 
of the solution. Another advantage, somewhat neglected to date, 
is that in principle the so-called "fluctuation properties"23 can be 
calculated directly. Here the most important is the long-wave
length limit of the partial structure factor for particle number 
fluctuations, SNN(0), defined by 

W O ) = [(N*) - (N)2]/(N) (D 

where TV is the number of particles in a certain GCMC config
uration, and (N) is its grand canonical average. The quantity 
SNN(0) is related to derivatives of the activity coefficients,12'24'25 
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and in simple (uncharged) liquids 5NN(0) is proportional to the 
isothermal compressibility. An instability in the system, for ex
ample spinodal decomposition, is signalled by the inverse com
pressibility approaching zero. In modern density functional 
theories of freezing,26 to first order in perturbation theory SNN(0) 
determines the magnitude of the fractional density change on 
freezing. 

In this work we present (1) the results of GCMC simulations 
for SNN(0) and structural properties of 2:2 electrolytes and (2) 
a comparison of this data with the predictions of integral equations 
theories. In Section 2 we summarize the electrolyte model and 
theoretical methods. The results are collected in the figures and 
tables of Section 3. The simulation data are used to analyze 
critically the hypernetted chain equation results for SNN(O) and 
for certain correlation functions. In addition, a new "bridge" 
function correction to the hypernetted chain equation19 is tested. 
Our conclusions are stated in Section 4. 

2. Electrolyte Model and Theoretical Methods 
A. Hard and Soft Models of Electrolytes. The simplest model 

which captures many essential features of real electrolyte solutions 
is known in the literature as the primitive model.2"8 The ions are 
represented as charged hard spheres distributed in a structureless 
dielectric continuum representing the solvent, which is charac
terized solely by its relative permittivity. Moreover, the positive 
and negative ions have the same size and have the same per
mittivity as the "solvent" in which they are embedded. A more 
realistic model has been proposed by Ramanathan and Friedman,27 

in which the ions are "soft" spheres with a short-range potential, 
which has the same functional form but different parameters than 
the primitive model. Both "hard" and "soft" sphere models are 
studied in the present work. The pairwise interaction potential 
energy between the ions is ,represented by the following function:28 

/8MUW = ^ / V ^ W ) + Au[(r*; + r\)/r]9 (2) 

where Z 0̂ is the charge on the ionic species i, €0tr is the permittivity 
of the system, and the parameter which measures the size of the 
ions is chosen here to be A$ = (1.804 nm)|zjZj|/(rj* + r*) at 298 
K. As usual, /3 = \/kBT, where T is the absolute temperature 
and kB is Boltzmann's constant. For the hard-sphere potential, 
A-,j is infinite if r < (r*-, + r*j), and zero elsewhere, where r*s 
denotes the hard-sphere radius of ion j . 

The model described by eq 2 has been investigated previous
ly,28'29 and one helpful conclusion is that the soft-sphere model 
gives structural and thermodynamic results which can be compared 
with the hard-sphere model provided that the minima of the pair 
potential functions «+-(/•) coincide. This minimum, denoted by 
the symbol "a", is a convenient measure of the size of the ions, 
and here it takes the value 0.462 nm. While the models studied 
here are clearly simplifications of nature, especially in ignoring 
the molecule nature of the solvent, they have proven to be a useful 
starting point for accurate prediction of thermodynamic properties 
of real electrolytes.14 Furthermore, simple models provide an 
important testing ground for new approximations such as those 
discussed below. 

B. Grand Canonical Monte Carlo Simulations. The grand 
canonical Monte Carlo procedure used in this work has been 
described in detail elsewhere.3,5 In 1986, the GCMC method was 
used by two different groups to study polyelectrolyte solutions, 
both via charged cylinder models17 and from detailed studies of 
NaDNA.30 In this kind of simulation, the chemical potential 
H is held fixed along with the volume V and temperature T. The 
number of particles of type k, Nk, is allowed to fluctuate around 
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(28) Rossky, P. J.; Dudowicz, J. B.; Tembe, B. L.; Friedman, H. L. J. 
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6541. See also: Paulsen, M. D.; Richey, B.; Anderson, C. F.; Record, M. T. 
Chem. Phys. Lett. 1988, 143, 115. 

an average value (determined by the chemical potential). The 
procedure is realized in two steps. First, a randomly chosen ion 
(state "i") is moved into a new random position (state "f) 
somewhere in the simulation cube. This attempted move is ac
cepted with probability yjj 

/u = min{l, KexpHJd/j-i/,)]) (3) 

where U-, is the configurational energy of state i, and Y is equal 
to unity in this (canonical) step. Secondly, the number of ions 
in the system may change. A random decision is made to attempt 
to either insert or delete a neutral pair of ions. If the number of 
cations in the configuration j is TVj+ = Ar

i
+ + 1 (Nf = Nf + 1), 

then the coefficient Y in eq 3 is given by 

Y= y\^(N+) (Nj/(NfNf) (4) 

In eq 4, both the mean activity coefficient y+_ and the average 
number of ions are unknown at the beginning of the simulation. 
During the simulation one determines the average concentration 
in the system, the configurational energy, the pressure, and the 
chemical potential. One of the goals of this simulation is to 
determine accurately the averages (N) and (N2) needed for the 
direct evaluation of S1NN(O).31,32 In using eq 1, one subtracts two 
quantities of order 100 to obtain the resultant quantity of order 
unity. This requires long simulations; in a few cases more than 
150000 "passes" (number of generated configurations per particle) 
are required to collect good statistics. Even so, the tables and 
figures show measurable numerical uncertainty in this quantity. 

The probability distribution for the number of ions N at any 
step of the simulation is similar to that observed by us for one-
component systems.32 All simulations presented here were per
formed in a cubical box with periodic boundary conditions and 
the minimum image convention. Several studies6,33 indicate that 
this is an acceptable approximation in the region of parameters 
and concentrations of interest here. Most of the results presented 
in the next section are obtained for a system of approximately 
130 ions in the central box. To obtain a check of finite size effects, 
several simulations have been performed for 240 and 450 ions. 
The results for SNN(0) will be discussed in Section 3. 

C. HNC Integral Equation. Modern theories of liquids are 
based on the diagrammatic expansion of the total correlation 
function h(r), h(r) = g(r) - 1, as explained for example in ref 34. 
The theory and numerical procedures used in this work have been 
published elsewhere18 and will not be repeated here. For mul-
ticomponent systems, the total correlation function may be 
written34 

V i 2) = expt-/?Mij(r12) + B-^rn) + hi}(rn) - C^rn)] - 1 (5) 

where B^(r) is the so-called bridge function (the infinite sum of 
"bridge" graphs) and c-^r) is the direct correlation function, defined 
by the Ornstein Zernike equation 

K^rn) = C^rn) + Epk fdr3 c{k(rn)hkj(ri2) (6) 

where pk denotes the number density of species k. For a two-
component system there are of course three distinct direct cor
relation functions c-^(r), and three total correlation functions hti(r). 
It is convenient to define a matrix with the elements 

Pij = Ph (7) 

and the function t = h - c, in order to rewrite eq 6 in the more 
compact form 

pip = pcphp (8) 

In eq 8, the carets denote Fourier transforms. In Coulombic 

(31) Debenedetti, P. G. J. Chem. Phys. 1986, 86, 7126. 
(32) Vlachy, V.; Pohar, C; Haymet, A. D. J. J. Chem. Phys. 1988, 88, 

2066. 
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(34) Hansen, J. P.; McDonald, I. R. Physics of Simple Liquids, 2nd ed.; 

Academic Press: London, 1986. 
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Table I. Grand Canonical Monte Carlo Results for the Soft Sphere 
Model with r*+ = r*. = 0.14214 nm (a = 0.42 nm)° 

run (JV) 

1 119.1 
2 244.3 
3 447.7 

103c 
L/a (mol dm"3) SN N (O) 

64.0 5.1 1.37 ±0.04 
80.0 5.35 1.38 ±0.03 

100.0 5.02 1.32 ±0.04 

configs 
(millions) 

8.0 
16.0 
8.0 

"The Bjerum length X8 is 2.857 nm. L is the length of the Monte 
Carlo cell. 

systems, the long-range part of the potential requires special 
treatment. The total potential u^ may be separated into a 
short-range and a long-range contribution \ptj 

*„ = -0My + Butf (9) 

where the superscript s denotes the short-range part. Subtracting 
the long-range contributions 

V"1 = p-> - £ 

and with the definitions 

cs = c - \j/ 

T = t- q + \p 

pqp = V - p 

we obtain the renormalized version of the Ornstein-Zernike 
equation, suitable for systems with Coulombic interactions 

pjp = Vcs[/ - VcT1V - pcsp (14) 

This equation can be solved numerically together with the 
closure defined by eq 5. Here, as in our previous work,15'18,19 we 
have used an efficient algorithm based on ideas proposed by 
Gillan35 and Labik and co-workers36 and summarized in ref 18. 

D. IPY Closure for the Integral Equation. Since the early 
1960's, in the absence of better approximation, the bridge function 
fiy in eq 5 has often been set to zero, which is called the hyper-
netted chain (HNC) approximation. While this theory is very 
successful in describing 1:1 electrolytes (and other Coulombic 
systems), significant deviations have been observed for highly 
charged ions such as 2:2 aqueous electrolytes and colloids.4,15 This 
conclusion is amplified here. The integral equation theory can 
of course be improved if a reasonable estimate for the bridge 
function can be obtained.2829'37 Rather than try to calculate 
low-order terms in the graphical expansion of the bridge function, 
we have investigated a "new" IPY closure proposed recently by 
us,19 which is only slightly more difficult to implement than the 
old HNC theory. 

In the new theory, the bridge function is defined in terms of 
a new function, r', given by T' = t - q' + \p', which is similar to 
eq 12, except that a new choice of the long-range part of the 
potential \p' has been made. It is now the long-range part of a 
modified soft-sphere MSA direct correlation function, a choice 
influenced by the work of Madden.38 Hence, the function a' is 
now an MSA chain sum. The bridge function is given explicitly19 

by 

Bq = In (1 + r'ij) - T', (15) 

for like charges and for unlike charges when r'y > 0 (a rare event), 
and by 

BVs = In [2 - expr-T'ijXr'ij + I)] (16) 

for unlike charges when r'y < 0 (the usual case). Full details are 

(35) Abernethy, G. M.; Gillan, M. J. Mol Phys. 1980, 39, 839. 
(36) Labik, S.; Malijevsky, A.; Vonka, P. MoI. Phys. 1985, 56, 709. 
(37) Re58ie, J.; Vlachy, V.; Haymet, A. D. J. J. Am. Chem. Soc. 1990,112, 

3398. 
(38) Madden, W. G. J. Chem. Phys. 1981, 75, 1984. 

Table II. Grand Canonical Monte Carlo Simulation Results for the 
Hard Sphere Model" 

configs 
(million) run (mol dm"3) -0U/N -lnf± SNN(O) 

1 
2 
3 
4 
5 

0.00433 
0.03375 
0.0624 
0.0988 
0.5188 

0.794 
1.49 
1.71 
1.89 
2.58 

0.543 
0.291 
0.2325 
0.195 
0.108 

0.611 
1.235 
1.459 
1.635 
2.23 

1.31 ±0.04 
1.56 ±0.04 
1.65 ±0 .03 
1.60 ±0.04 
1.31 ±0 .03 

5.0 
5.0 
5.0 
5.0 
6.0 

"a = 0.462 nm, Bjerum length is 2.857 nm. The uncertainties in the 
concentration and In y± are estimated to be 1%. 

Table UI. Grand Canonical Monte Carlo Results for the Soft 
Sphere Model (Equation 2) with r*+ = r*_ = 0.15635 nm" 

run (mol dm"3) -&U/N y± -In y± SNN(0) 
configs 

(million) 

(10) 

(11) 

(12) 

(13) 

1 
2 
3 
4 

5 
6 
7 
8 

0.00434 
0.0624 
0.297 
0.567 

0.00392 
0.0609 
0.0628 
0.347 

(A) Bjerum Length 2.857 nm 
0.779 0.542 0.612 1.33 ± 0.03 6.0 
1.665 0.232 1.46 1.64 ±0.03 6.0 
2.23 0.130 2.04 1.51 ± 0.03 7.0 
2.48 0.109 2.22 1.23 ± 0.03 6.0 

(B) Bjerum Length 4.001 nm 
1.865 0.319 1.143 1.61 ±0.1 20.0 
2.95 0.093 2.38 2.07 ± 0.1 20.0 
2.96 0.092 2.39 2.05 ± 0.1 20.0 
3.63 0.0372 3.29 2.0 ± 0.1 10.0 

(C) Bjerum Length 4.1284 nm (225 Ion Pairs in the Central Box) 
9 0.0608 3.11 0.083 2.49 2.07 ± 0.1 24.0 
"The uncertainties in the concentration and In y± are approximately 

1% for runs 1-4 and 2% for runs 5-9. 

presented in ref 19. Both the new integral equation, called the 
ionic Percus-Yevick (IPY) equation, and the HNC approximation 
are compared below with the ("exact") GCMC data for the model 
electrolyte. 

3. Results and Discussion 
A. S N N ( 0 ) and Finite Size Effects. The grand canonical Monte 

Carlo results obtained in this study are collected in the tables. 
First, it is important to investigate to what degree the fluctuation 
property 5NN(0) depends on the size of the system, that is on the 
average number of particles (N) in the basic cell. For the analysis 
we choose a dilute solution of 2:2 electrolyte, where these effects 
are expected to be large.3 We adopt the parameters /•*+ = r*_ 
= 0.14214 nm and the Bjerrum length XB = |ziZj||8e0

2/(4ir€0«r) = 
2.857 nm to facilitate comparison with earlier work.28,29 

The results for 5NN(0) and the average concentration are 
presented in Table I, as a function of (N). In the GCMC cal
culation the number of particles fluctuates, so the results for 
5NN(0) do not apply to exactly the same concentration. However, 
there is little concentration dependence in 5NN(0) and the results 
presented in Table I represent a reasonable estimate of the size 
effects. 

Bearing in mind the statistical uncertainties in the calculations, 
the conclusion is that 51MN(O) values show little size dependence 
for these values of the parameters. There is a different size 
dependence, however, with the two particle correlation functions, 
gij(r). With a small number of particles ((TV) ~ 120) we found 
that like and unlike correlation functions do not normalize to unity 
at large distances, but rather they cross and are finally about 1% 
apart. The effect was found much smaller for (N) ~ 240, and 
it finally disappeared for Run 3, where a large number of particles, 
(N) ~ 440, was studied. We also found that these inaccuracies 
have no significant effect on the shape of the distribution functions 
up to the distances r ~ 6a. The number of particles used in the 
calculations presented below is approximately 120. 

The results for the hard-sphere model are presented in Table 
II. The ions are chosen to have diameter a = 0.462 nm, and the 
Bjerum length XB = 2.857 nm, corresponding to an aqueous 
solution of 2:2 electrolytes at 298 K. The value of the hard-sphere 
radius is chosen to facilitate comparison with a recent, very precise, 
canonical Monte Carlo study of dilute 1:1 electrolytes.39 Two 
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Figure 1. The quantity 5NN(0) obtained from grand canonical Monte 
Carlo simulations (symbols) and the hypernetted chain (HNC) approx
imation (solid lines). The filled circles denote hard-sphere results (Table 
II), and open circles denote the soft-sphere model (Runs 1-4 of Table 
III), all for 2:2 electrolytes with the Bjerum length 2.857 nm. The filled 
squares denote the soft-sphere mode! (Runs 5-8 of Table III), but with 
the Bjerum length 4.001 nm. For comparison, the hypernetted chain 
results for 1:1 aqueous electrolyte are also displayed (lower line). 

thermodynamic properties, the excess energy per particle and the 
mean activity coefficient, are shown at five concentrations, together 
with the number of configurations during which these statistics 
were collected. The fluctuation quantity 5NN(0) is also tabulated 
and will be discussed below. 

Analogous results are presented in Table III for the soft-sphere 
model, described by eq 2. In these calculations r*+ = r*_ = 
0.15635 nm, so that the minimum of the +-potential corresponds 
with the minimum of the hard-core model investigated above 
(Table II). In case A the Bjerum length has the value 2.857 nm, 
corresponding to the hard-sphere 2:2 electrolyte model presented 
in Table II. A second value of the dielectric constant has been 
investigated (case B), corresponding to a more strongly interacting 
system such as a 2:2 electrolyte in a 30% dioxane aqueous solution. 
The Bjerum length for this case (B) is 4.001 nm (relative per
mittivity er = 56, at 298 K). As one can see from Table III, much 
longer simulation runs were needed for this strongly interacting 
system. 

B. Concentration Fluctuations. In this work we study the 
dependence of the concentration fluctuations in the solution upon 
(i) the overall electrolyte concentration and (ii) the dielectric 
constant of the solution. A quantity of central interest, which has 
not been studied widely in previous simulations, is SNN(0), defined 
by 

SNN(0) = 1 + (1/P)LPiPJh1J(O) (17) 

where p = L P P and the caret again denotes Fourier transform. 
Equation 17 is, however, just another form of eq 1, but one which 
is more convenient for study via integral equations. 

The connection of this quantity to thermodynamics is given most 
simply by using temperature, chemical potential of the solvent, 
and electrolyte concentration c as the independent variables.12 At 
constant temperature 

SNN(0)- ' = 1 + d In 7 ± / d In c (18) 

which is a form of the "compressibility" equation.12^25'34 Therefore, 
eq 18 is another potential route for calculating the mean activity 
coefficient of electrolyte solutions. 

2.0 - It 
1.8- N . 

X 

z » 1.4 

1.2 

1.0 i 

—̂̂  2:2 

I I - 0 1 

1:1 

0.10 0.12 0.14 0.16 0.7 

a/1. 
Figure 2. The quantity SNN(0) as a function of inverse reduced Bjerum 
length <J/\B (a = 0.462 nm). The solid lines are obtained from the HNC 
approximation, and the results corresponding to 1:1 and 2:2 electrolytes 
are indicated as filled circles. The grand canonical results are given as 
filled squares, with the error bars indicating numerical uncertainty. 

One interesting fact is that a combination of eq 17 and 18 does 
not yield the Debye-Huckel limit for In y± if one uses the familiar 
linearized form of the pair correlation function, gy « 1 - ZjeOi30j. 
where fy is the average electrostatic potential of ion j . Due to 
the derivative, the correct limit is obtained by including the next 
term in the series expansion. 

It should be mentioned that eq 18 is a direct route for com
parison with experimental data. The right-hand side is propor
tional to the diffusion coefficient, which can be measured.40 

Hence, there is no need to integrate the experimental data to obtain 
In 7 ± prior to comparison with the theory. 

For the hard and soft models, the numerical values of SN N (O) 
are given in Tables I—III, together with error estimates. In ad
dition, this quantity is plotted in Figure 1 as a function of the 
square root of the electrolyte concentration. Together with the 
grand canonical Monte Carlo data (symbols), we have included 
the predictions of the HNC integral equation (solid line) for the 
soft-sphere model. In Figure 1 the GCMC data for the charged 
hard-sphere fluid at XB = 2.857 nm are denoted by filled circles, 
and the results for the equivalent soft-sphere model are denoted 
by open circles. The error bars are also indicated in Figure 1. 

As one may expect from previous studies,28 for both hard and 
soft models the calculations yield similar results for 51NN(O). 
However, the predictions of the HNC approximation are in only 
semiquantitative agreement with the GCMC data for SNN(O). In 
the range of concentrations around 0.07 M (1 M = 1 mol dm"3), 
the discrepancies for 2:2 electrolytes are considerably larger than 
the numerical errors of the methods. It is interesting to note that 
the HNC approximation underestimates the fluctuations, and 
therefore also SNN(0) f° r this region of parameters and concen
trations. Like any approximate theory, the HNC approximation 
is "internally inconsistent" in that the "virial and the 
"compressibility" pressures disagree markedly for 2:2 electrolytes. 
An additional measure of this effect is demonstrated by the fact 
that an approximate value of S N N ( 0 ) at the electrolyte concen
tration 0.0625 M, obtained via the "virial" route, is 1.62, in 
fortuitously good agreement with the simulation data. 

The long-wavelength limit of the partial structure factor for 
particle number fluctuations SNN(0) is an important quantity in 
the theory of simple liquids, where it is related simply to the 
isothermal compressibility. In particular, an absolute condition 
for thermodynamic stability is S N N ( 0 ) > 0. By studying this 
quantity, a first indication of the existence of an unusual, very 
low density "critical point" for dilute solutions of the charged hard 
spheres was discovered by Stell, Wu, and Larsen.20 For molten 
salts, an HNC study of this quantity has been presented by 
Abernethy and Gillan.35 They studied SNN(0) as a function of 
T* at two different reduced densities. Below a certain reduced 

(39) Sloth, P.; Sorensen, T. S.; Jensen, J. B. J. Chem. Soc., Faraday Trans. 
2 1987,53, 881. 

(40) Harned, H. S.; Owen, B. B. The Physical Chemistry of Electrolyte 
Solutions; Reinhold Publishing: New York, 1958. 
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Figure 3. The correlation functions for like ions (#__ = g+ +) for the 2:2 
model electrolyte (Run 2 of Table III), namely at the concentration 
0.0624 M. The symbols here represent the Monte Carlo data, the solid 
line is the HNC approximation, and the broken line is the IPY approx
imation." 

temperature, they were unable to obtain convergent solutions of 
the HNC approximation, even though a powerful basis set al
gorithm had been used. The authors interpreted this as a possible 
spinodal decomposition of the molten salt into two fluid phases. 
Recently, the examination of the HNC approximation has been 
extended to highly asymmetric electrolytes, and a similar con
clusion concerning spinodal decomposition has been reached.41 

Our results for 5NN(0) as a function of the inverse reduced 
Bjerum length a/XB are shown in Figure 2, for the electrolyte 
concentration of approximately 0.0625 mol/dm3. The predictions 
of the HNC approximation are included as the solid line, and the 
filled squares are the grand canonical Monte Carlo data for Runs 
2, 7, and 9 of Table III. One observes that the fluctuations in 
ion number get very large around « / \ B = 0.112, and in fact we 
have found it impossible to obtain fully convergent HNC solutions 
below this value. Although a sharp increase in SNN(0) is observed 
around this value, the HNC approximation actually underesti
mates the true value of SN N (O) in this region of parameters, 
whereas earlier work on asymmetric electrolytes strongly suggests 
that it overestimates fluctuations.41 In our view, the HNC theory 
leads to spurious predictions of spinodal decomposition. 

For a simple one-component fluid, an extensive numerical study 
of the critical behavior of the HNC approximation has been 
published recently by Poll and Ashcroft.42 Although this study 
focused on a "Lennard-Jones-like" double Yukawa potential, with 
very short range interactions, our Figure 2 above closely resembles 
Figure 2 of that study.42 These authors concluded that there is 
in fact no true critical point in the HNC approximation, since 
S(O) does not actually diverge on the critical isochore; however, 
there is a locus of temperatures on which 5(0) is finite, but below 
which no physical solution to the HNC approximation exists. A 
similarly complete numerical examination of the two component 
Coulombic system would be even more demanding, due to the 
long-range forces involved, and to our knowledge it has not been 
published. It would yield important information about the ability 
of the HNC approximation to describe critical phenomena. 

C. Pair Correlation Functions. Finally it is worthwhile ex
amining the microscopic correlations between ions, since these 
correlations are responsible for the macroscopic behavior of the 
system. By comparison with the simulations, the accuracy of the 
HNC approximation is inconsistent, and it varies with the size 

(41) Belloni, L. Phys. Rev. Lett. 1986, 57, 2026. 
(42) Poll, P. D.; Ashcroft, N. W. Phys. Rev. A 1987, 35, 5167. 

Figure 4. The correlation function for unlike ions g+ J/) for the same 
electrolyte as in Figure 3 (lines and symbols have the same meaning). 

1.5 
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Figure 5. The correlation functions for like ions for the strongly inter
acting electrolyte Run 7 of Table III, namely the low dielectric solution 
at 0.0628 M. Lines and symbols have the same meaning as in Figure 
3. 

Figure 6. The correlation function for unlike ions g+-(r) for Run 7 of 
Table III (lines and symbols have the same meaning as in Figure 3). 
Note the strong ordering in this electrolyte. 

of the ions, dielectric constant, and concentration of electrolyte. 
We will illustrate this in three examples shown in the figures below. 
The main point is that an approximation whose accuracy varies 
so widely is not useful. 

In Figure 3 we plot the correlation function g++ or g.. for like 
ions as a function of a distance r, obtained by both the GCMC 
simulations (symbols) and the HNC theory (solid line). These 
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Figure 7. The correlation function for like ions, g++(r) or g. _(/•), for Run 
2 of Table I, namely at a concentration of 0.00535 M. The symbols 
represent the Monte Carlo data and the solid line is the HNC approxi
mation. The broken line is the new IPY closure. 

results are for the 2-2 aqueous electrolytes at 298 K, listed as Run 
2 in Table III. The corresponding correlation function for unlike 
ions g+_ is shown in Figure 4. It is clear that the HNC ap
proximation underestimates markedly the accumulation of the 
positive ions next to the negative ions, as observed previously.28,29 

The disagreement between the Monte Carlo data and the HNC 
approximation is larger for more strongly interacting systems (Run 
7 of Table MI) as shown in Figures 5 and 6. Especially interesting 
are the results presented in Figure 5. Both calculations reveal 
a pronounced peak in the like distribution function, whereas the 
Poisson-Boltzmann (PB) theory is forced to yield monotonic 
correlation functions.4 A smaller magnitude "bump" in g++(r) 
has already been observed in the computer simulations of the 
charged hard-sphere model for 2-2 electrolytes.3,4 This feature 
becomes enhanced at lower screening (XB = 4.001 nm), indicating 
strong clustering of the ions. However, the HNC approximation 
does not agree well with the simulation data. There is a shoulder 
for r « 3a in the GCMC correlation function, which is not re
produced by the HNC results. The shoulder may indicate the 
existence of linear arrays of four ions, probably H—!--structures. 
In addition, the HNC approximation underestimates grossly the 
accumulation of positive ions next to negative ions, even more than 
the aqueous solution (Figure 4) at the same concentration. Hence, 
while the HNC theory is extremely accurate for 1:1 aqueous 
electrolytes and is certainly superior to the qualitatively incorrect 
PB approximation, it cannot be proposed as a viable theory of 2:2 
electrolytes or more strongly interacting systems. Conclusions 
concerning fluctuation quantities, and possible phase transitions, 
must therefore be treated with great caution. 

Related, earlier theoretical studies of aqueous 2-2 electro
lytes28,29 have shown that HNC approximation (i) underestimates 
+ -ion pairs at the concentrations 0.005, 0.0625, and 0.2 M, (ii) 
overestimates triple ion clusters (H—f- or - + -) at 0.005 M, and 
somewhat overestimates them at 0.0625 and 0.2 M. They also 
show (iii) that a reasonable estimate for the "bridge" graphs, 
obtained from computationally intensive diagram evaluations, 
brings the theory into better agreement with the simulation data. 
The failure of the (unmodified) HNC approximation to describe 
accurately the correlation functions in strongly interacting systems 
is demonstrated again in Figures 5 and 6. 

Figure 8. The correlation function for unlike ions, g+-(r), for the same 
electrolyte as in Figure 7. Lines and symbols have the same meaning as 
in Figure 7. 

Finally, we examine the predictions of a new bridge function 
closure, to replace the HNC approximation fiy(r) = 0, proposed 
recently by us.19 In Figures 7 and 8 we present our GCMC and 
integral equation results for aqueous 2-2 electrolyte (Run 2 of 
Table I) at a concentration of 0.00535 M. This calculation applied 
to a set of parameters studied previously.28,29 In particular, the 
HNC correlation function for like ions (cf. Figures 3 and 7 of 
our work) has been discussed thoroughly. The predictions of the 
new IPY closure19 are in general a measurable improvement over 
the HNC results. For like pairs, the new closure does not have 
the erroneous peak at r = 2a seen in the HNC but not in the 
GCMC results. However, it is somewhat of an overcorrection 
in that now the triple ion clusters are underestimated. For unlike 
ions, the + - ion pairs are underestimated, but are closer to the 
simulation data than the HNC results. At higher concentrations 
c = 0.0624 M (Figures 3 and 4), the new closure is approximately 
the same as the HNC for the like ion pairs, and identical with 
the HNC approximation for the unlike ion pairs. Thus, the new 
closure gives results very close to the earlier work with numerically 
evaluated bridge graphs28,29 but is computationally much more 
practical. Moreover, the new (and the earlier work) studies give 
the largest corrections at concentrations where the disagreement 
between HNC and simulation is worst. 

4. Conclusions 

In summary, GCMC simulations have been used to obtain 
directly the fluctuation quantities SNN(0), which have been used 
in approximate integral theories by other authors as a signature 
of instability. We find no evidence for instability in the range 
of concentrations studied. The integral equation results confirm 
that the HNC approximation is not a viable theory for 2:2 
electrolytes, due to its highly variable accuracy. However, a new 
IPY integral equation19 does not suffer from the pathological 
features found in the HNC approximation at lower concentrations. 
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